DETECTING THE MANIPULATION OF EARNINGS IN THE COMPANY: TRIANGULATION OF METHODS

Lucia Svabova

University of Zilina, Faculty of Operation and Economics of Transport and Communications, Department of Economics, Zilina, Slovakia

Earnings management

"Earnings management is an accounting technique for financial reporting that shows a mostly positive view of corporate finances and the financial situation."

Durana, P., Valaskova, K., Chlebikova, D., Krastev, V., & Atanasova, I. (2020). Heads and Tails of Earnings Management: Quantitative Analysis in Emerging Countries. *Risks*, 8(2), 57. https://doi.org/10.3390/risks8020057

Main aspects of this study

• main idea:

- application of three different methods strengthen the obtained results
- if the methods agree in the result, it is more likely that earnings management really occurs in the company

• scientific gap:

- only a few first studies on this issue are published in Slovakia
- the model for Slovak companies was created in the study Svabova, L., Kramarova, K., Chutka, J., & Strakova, L. (2020). Detecting earnings manipulation and fraudulent financial reporting in Slovakia. *Oeconomia Copernicana*, 11(3), 485–508. https://doi.org/10.24136/oc.2020.020

• aim:

• to extend the knowledge of methods suitable for the detection of earnings management in the Slovak environment

Methods

Triangulation of methods:

- Beneish model (M-score)
- discriminant model for Slovak companies $(M score_{svk})$
- logistic model for propensity score for Slovak companies $(P score_{svk})$

Variables used in the study

Variable name	Index		
DSRI	Days Sales in Receivables Index		
GMI	Gross Margin Index		
AQI	Asset Quality Index		
SGI	Sales Growth Index		
DEPI	Depreciation Index		
SGAI	Sales, General, and Administrative Expenses Index		
LVGI	Leverage Index		
TATA	Total Accruals to Total Assets		

- Beneish model original approach with use of the variables
- discriminant model and propensity score model for Slovak companies – variables from two consecutive years - the year preceding the fraudulent conduct in the company and the year in which the tax fraud was detected

Beneish model

- probit regression
- created using the sample of 2,406 companies: 74 fraudulent and 2,332 non-fraudulent companies

```
\begin{aligned} M - score = \\ &= -4.840 + 0.920 \cdot DSRI + 0.528 \cdot GMI + 0.404 \cdot AQI + 0.892 \cdot SGI + 0.115 \cdot DEPI - 0.172 \cdot SGAI - \\ &- 0.327 \cdot LVGI + 4.697 \cdot TATA \end{aligned}
```

- dividing point: -2.22
 - if M score > 2.22 the company probably applied opportunistic earnings management
 - if M-score < 2.22 the company is not suspicious of the fraudulent accounting processes

Discriminant model M – score_{svk}

- discriminant analysis model
- created using the sample of 22 Slovak companies: 22 fraudulent and 22 non-fraudulent companies

```
\begin{split} M - score_{svk} \\ &= 0.29 \cdot AQI_b + 0.060 \cdot AQI_{tf} - 0.437 \cdot DEPI_b + 0.180 \cdot DEPI_{tf} + 0.100 \cdot DSRI_b + 0.667 \\ \cdot DSRI_{tf} + 0.943 \cdot GMI_b + 1.511 \cdot GMI_{tf} - 1.561 \cdot LVGI_b - 1.523 \cdot LVGI_{tf} + 0.427 \cdot SGAI_b \\ &+ 0.681 \cdot SGAI_{tf} - 0.051 \cdot SGI_b + 1.920 \cdot SGI_{tf} + 0.497 \cdot TATA_b + 1.031 \cdot TATA_{tf} - 3.699 \end{split}
```

- dividing point: 0
 - if $M score_{svk} > 0$ the company probably applied opportunistic earnings management
 - if $M-score_{svk} < 0$ the company is not suspicious of the fraudulent accounting processes

Propensity score model $P-score_{svk}$

- logistic regression model
- created using the sample of 22 Slovak companies: 22 fraudulent and 22 non-fraudulent companies

$$P - score_{svk} = \frac{1}{(1 + \exp\{z\})},$$

where

$$=49.582AQI_b-0.162AQI_{tf}-4.381DEPI_b+74.063DEPI_{tf}-0.595DSRI_b-51.387DSRI_{tf}+0.883GMI_b\\-878.919GMI_{tf}+172.012LVGI_b+123.410LVGI_{tf}-24.118SGAI_b-30.941SGAI_{tf}+29.541SGI_b\\-200.461SGI_{tf}-2.998TATA_b-104.104TATA_{tf}$$

- quantification of the propensity score to the manipulation of profits
- dividing point: 0.5

Results

- sample of 1,900 Slovak companies
- data from 2016 2018
- triangulation of methods identification of fraudulent company by one, two and all three models

	Beneish model M — score	discriminant model M – score _{svk}	propensity score model $P-score_{svk}$
potential fraudulent company	743 (39.1%)	1,049 (55.2%)	927 (48.79%)
non-fraudulent company	1,157 (60.9%)	851 (44.8%)	973 (51.2%)
	621 (32.7%)		-
match of fraud	- 72		9 (38.4%)
identification	685 (36.1%)	-	
	528 (27.8%)		

Results

- Beneish model match with the $M-score_{svk}$ model in 32.7% enterprises
- Beneish model match with the $P-score_{svk}$ model in 36.1% enterprises
- Slovak $M score_{svk}$ and $P score_{svk}$ models match in 38.4% enterprises
- all three models identically identified earnings management in 27.8% enterprises

Thank you for your attention

Acknowledgements

The paper and the research was supported by

- Slovak Research and Development Agency Grant NO. APVV-17-0546: Variant complex model of Earnings management in conditions of Slovak republic as an essential tool of the market uncertainty
- Invitation to submit your papers to

